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Abstract

The calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer

technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the

ISIS spallation neutron source facility of Rutherford Appleton Laboratory. In this calculation, secondary particles

from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-

thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation, a three-dimensional multi-layer

technique and energy cut-off method were used considering a spatial statistical balance. Finally, the energy spectra of

neutrons behind the very thick shield could be calculated down to the thermal energy with good statistics, and the

calculated results typically agree well within a factor of two with the experimental data over a broad energy range. The
12Cðn; 2nÞ11C reaction rates behind the bulk shield were also calculated, which agree with the experimental data

typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem.

r 2003 Elsevier B.V. All rights reserved.

PACS: 24.10.Lx; 28.41.Qb
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1. Introduction

Although steady progress in computer technol-
ogies has made calculations ever faster, reliable
calculations of neutron transmission through a
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very thick shield still remain quite difficult. This is
because a long computing time and sophisticated
variance reduction techniques are needed to obtain
particle fluxes and energy spectra with good
statistics. At the same time, the corresponding
experimental data for benchmark calculation are
rather scarce.
Since 1992, at the ISIS spallation neutron source

facility of the Rutherford Appleton Laboratory
(RAL) using 800-MeV protons, measurements of
deeply penetrating neutrons through a thick bulk
shielding were performed to obtain benchmark
d.
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Fig. 1. Cross-sectional view of the target station of neutron

spallation source with an 800-MeV proton beam at ISIS.
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experimental data [1,2]. In a 1998 experiment,
concrete and iron shields were additionally in-
stalled on the top floor of the target station and the
neutron energy spectra and the reaction rates
behind shields of various thickness were measured
using the activation detectors [3–5]. All of the
experimental conditions, the geometry and results
are precisely described and are numerically given
in Ref. [5].
Since a calculation with three-dimensional geo-

metry based on the actual shield structure could
hardly be accomplished, a Monte Carlo calcula-
tion under the one-dimensional geometry [6] and a
two-dimensional discrete ordinate calculation [7]
were performed earlier to analyze this ISIS
shielding experiment; they are, however, inade-
quate to estimate the particle flux distributions. In
this work, a deep-penetration calculation using the
MARS14(02) Monte Carlo code [8] was performed
with a newly developed three-dimensional multi-
layer technique to analyze the ISIS shielding
experiment, and the spatial distribution of the
neutron flux and the energy spectra were obtained
and were numerically reported in Ref. [9].
Fig. 2. Horizontal and vertical cross-sectional views of the

iron-igloo and an additional shield. The five detector positions

of ‘‘center’’, ‘‘up50’’, ‘‘down50’’, ‘‘left50’’ and ‘‘right50’’ are

shown as white circles in the upper figure.
2. Experiment

All experimental data which are compared
with the calculations in this work are cited from
the shielding experiment performed at ISIS in 1998
[3–5]. Neutrons were produced by 800 MeV
protons impinging on a thick tantalum target at
the center of the target station. The beam intensity
was about 170 mA at the target with a 50-Hz
repetition rate.
A cross-sectional view of the target station at

ISIS is shown in Fig. 1. The target vessel is covered
with a shielding plug consisting of 284-cm-thick
steel (density of 7:35 g=cm3) and 97-cm-thick
concrete (density of 2:3 g=cm3), a 6-cm-thick steel
vacuum plate and a steel-support plate. The
surface of the support plate was located 528 cm
above the beam line as shown in Fig. 2. A duct
(42:5� 42:5 cm2 cross-section) through the bulk
shield, which supplies helium gas to the target
vessel, reaches the top of the target station down
stream as shown in Fig. 1.
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Fig. 3. Geometry of target system consisting of a target, a

container and a reflector. All cylinders have a common center at

(0, 0, 0).
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In the experiment of 1998, an iron igloo
was equipped on the top of the target station
for reduction of the background neutrons mainly
due to the spurious neutrons leaked through
the He duct. Additional shields of 119-cm dia-
meter by 20–120-cm-thick concrete (density
of 2:36 g=cm3) and 10–60-cm-thick iron (density
of 7:8 g=cm3) were assembled on the support plate
inside the iron igloo, as shown in Fig. 2, in order to
measure the attenuation profiles of the neutron
flux through the additional shields.
Neutrons behind various thicknesses of the

additional concrete or iron shield were measured
using activation detectors of graphite, bismuth
and aluminum. The graphite activation detectors
were set at various positions called ‘‘center’’, ‘‘up’’,
‘‘down’’, ‘‘left’’ and ‘‘right’’ on an additional
shield surface of each thickness, as shown in Fig.
2. The other detectors were set only at the center
position. Neutron reaction rates of 12Cðn; 2nÞ11C;
27Alðn; aÞ24Na and 209Biðn; xnÞ210�xBi ðx ¼ 4210Þ
were obtained, and their attenuation profiles
through concrete and iron were clarified. Attenua-
tion lengths of high-energy neutrons for concrete
and iron were also estimated in this experiment.
A multi-moderator spectrometer (Bonner ball)
using indium-oxide activation detectors [10]
was also used for the measurement, and the
neutron energy spectra in the energy range from
thermal to 400 MeV were obtained by an unfold-
ing technique of the SAND-2 code [11] using the
above reaction rates (C, Al and Bi) and
115Inðn; gÞ116mIn: The response functions of the
indium Bonner ball were cited from Ref. [10], and
the reaction cross-sections of 12Cðn; 2nÞ11C were
evaluated by eye from the experimental data
[12,13], those of 27Alðn; aÞ24Na calculated by
Fukahori using the ALICE code [14], and those
of 209Biðn;xnÞ210�xBi cited from the ENDF/B-VI
high-energy library [15].
3. Calculation geometry

Fig. 3 shows the calculational model of the
target system, which consists of target (TaþD2O
cooling water), container ðFeþD2OÞ; and reflec-
tor ðBeþD2OÞ: All of these are of cylindrical
shape and have a common center. Two small
cylinders are parallel to the X -axis which is the
proton beam direction, and the largest cylinder is
perpendicular to it.
For calculations, the actual shield geometries

shown in Figs. 1 and 2 were simplified, and the
calculational geometries used in this study in
vertical cross-section are shown in Figs. 4 and 5
for the Y–Z plane and the X–Z plane, respec-
tively. Horizontal cross-sections are exemplified in
Figs. 6(a), (b) and (c) at the horizontal levels of A,
B and K in Fig. 5, respectively. The He-duct was
also taken into account through the bulk shield
geometry.
The densities and atomic compositions of the

target system and the shields are given in Tables 1
and 2, respectively, and the heterogeneous struc-
ture was changed homogeneously. As the deuteron
is not included in the MARS code, hydrogen was
used instead of the deuteron, and the atomic
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Fig. 4. Cross-sectional view of the Y–Z plane of the simplified geometry of target station used in the calculation.

Fig. 5. Cross-sectional view of the X–Z plane of the simplified geometry of target station used in the calculation.
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densities for hydrogen were set to be equivalent to
that of the deuteron. The composition of the iron-
igloo was considered to be the same as that of the
additional iron shield.
4. Calculational methods

4.1. Secondary particles from the target system

An 800-MeV proton beam was injected onto the
bottom center of the smallest cylinder (target)
along the X -axis, as shown in Fig. 3. The energies,
coordinates, directions and weights of the neu-
trons, protons and pions leaked from the target
system were first calculated with the MARS14(02)
Monte Carlo code and stored as source particles
for a bulk shield calculation. Since the geometry
of the target system was symmetrical with respect
to the Z ¼ 0 plane and the bulk shield of Zo0
was not taken into account in this work, particles
leaked in the region of Zo0 were stored as those
having an absolute value of the Z-coordinate
but with the Z vector reversed, and the weights
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Fig. 6. Horizontal cross-sectional views of the X–Y plane at A,

B and K cross-sections of Fig. 5.
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of all particles were multiplied by 0.5, as shown
in Fig. 7.

4.2. Three-dimensional multi-layer calculation for

variance reduction

To accomplish a deep-penetration calculation
with good statistics in a reasonable computing
time, a three-dimensional multi-layer technique
was newly developed in this work. The shielding
geometry was three-dimensionally divided into
several layers, as shown in Fig. 8, where layer (a)
is the target system, layer (b) is the target vessel,
and layers (c)–(h) are the bulk shield, layer (i) is the
uppermost bulk shield and the upper space, and
layer (j) is the area surrounded with the iron-igloo.
If a particle crossed outwards from a layer
boundary, the particle tracking was terminated
and the particle informations were recorded in a
file. They were then used for a next-layer calcula-
tion as source particles having the numbers multi-
plied by a factor of 5–10, like a splitting method.
The initial weight of the particle in the new layer,
W2; is given as

W2 ¼
N1�leak

N1
W1 ð1Þ

where W1 is the weight of the particle leaked from
the previous layer, N1 is the number of source
particles in the previous layer and N1�leak is the
number of particles leaked from the previous layer.
Track-length estimators (e.g. 20-cm-diameter and
2-cm-thick) were located at various positions
throughout the bulk shield and above the shield
top to obtain the neutron energy spectra.
In the final layer (j) of Fig. 8, three calculations

were carried out by changing the additional shield
(air, concrete and iron) using the same source
particles leaked from layer (i). The source particles
were emitted from the shield top floor ðZ ¼
511 cmÞ and from the outer surface of the iron-
igloo shown in Fig. 8.

4.3. Statistical balance

Since the forwardness of the particle production
at the target and the streaming through the large
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Table 1

Atomic compositions and averaged densities of the target system and the surrounding materials used in this calculation

Averaged Targets Containers Reflectors

density 14:5 g=cm3 3:58 g=cm3 1:69 g=cm3

wt% Atom=cm3 wt% Atom=cm3 wt% Atom=cm3

Ha 0.19 8.29E+21b 3.9 4.22E+22 21.1 1.37E+22

Be — — — — 68.3 9.83E+22

O 0.75 4.14E+21 15.6 2.11E+22 10.6 6.84E+21

Fe — — 80.5 3.10E+22 — —

Ta 99.06 4.84E+22 — — — —

aDeuteron is replaced by hydrogen.
bRead as 8:29� 1021:

Table 2

Atomic compositions of the bulk shield and the additional shields used in this calculation

Concrete Iron

Bulk shield

Density: 2:3 g=cm3 7:35 g=cm3

Additional shield

Density: 2:36 g=cm3 7:8 g=cm3

wt% Atom=cm3 wt% Atom=cm3

H 1.08 1.52E+22a — —

C 6.01 7.11E+21 0.14 5.47E+20

O 51.34 4.56E+22 — —

Na 0.12 7.42E+19 — —

Mg 0.28 1.64E+20 — —

Al 0.76 4.00E+20 — —

Si 12.56 6.35E+21 0.32 5.35E+20

P — — 0.02 3.03E+19

S 0.19 8.42E+19 0.008 1.34E+19

K 0.28 1.02E+20 — —

Ca 21.99 7.79E+21 — —

Ti 0.03 8.90E+18 — —

Mn — — 1.0 8.55E+20

Fe 5.36 1.36E+21 98.51 8.28E+22

The composition of the iron-igloo is equivalent to that of the additional shield.
aRead as 1:52� 1022:
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He-duct are dominant as seen in Fig. 1, the particle
intensity downstream is much higher than in
the other areas. To keep a good statistical balance
in the whole region of a layer, particles leaked
around the He-duct were recorded separately
at downstream (‘‘forward-duct’’), at side, and at
upstream (‘‘side-back’’), in the case of the layer (b)
(see Fig. 8), as shown in Fig. 9. Using these two
separate sources, the calculations from the
layer (c) to the layer (i) (see Fig. 8) were performed
in two ways, and the two results were summed
up at every estimator. A simple flow chart of this
step-by-step calculation is shown in Fig. 10. Note
that each layer includes the previous two layers
(e.g. layer (c) includes layer (a) and layer (b))
to take the reflected particles into consideration.
The thicknesses of the layers were from 100 to
200 cm:
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4.4. Energy cut-off

Since the experimental data are given above
the shield top floor, in order to save computing
time, the cut-off energies of all particles were set
to 20 MeV; up to about 1 m below the shield
top floor ðZ ¼ 394 cmÞ; above that region, the cut-
off energies of neutrons and charged hadrons were
set to be thermal and 0:2 MeV; respectively. This
approximation can be supported by the following
consideration. The neutron attenuation in the
lower energy region is much faster than that in
the high-energy region, and the contribution of
the lower energy neutron penetration through the
1-m-thick shield is negligible compared with the
lower energy neutrons generated newly from the
high-energy hadron cascade. For a calculation
below 14:5 MeV; the MARS default option of the
28-group-BNAB low-energy neutron transport
[16] was used in this study.

4.5. Data analysis

The neutron energy spectra were estimated by a
track-length estimation method. The reaction rates
of activation detectors were estimated using the
calculated neutron energy spectra and cross-
section data mentioned in Section 2. The neutron
dose rate is estimated using the calculated neutron
energy spectra and the neutron flux-to-dose con-
version factor of 1-cm depth cited from ICRP
pub.74 [17]; it is assumed to be constant at E >
200 MeV:
5. Results and discussions

5.1. Secondary particles from the target system

Fig. 11 shows the angular- and energy-distribu-
tions of the neutrons above 20 MeV (per lethargy,
per sr and per proton) leaked from the target
system. It can be seen that the neutrons generated
in the forward direction reach 800 MeV which is
the energy of the primary proton beam, and the
energy spectrum becomes much softer with the
emission angle. The leakage ratios of protons and
pions to that of neutrons are about 10% and 0.1%
from the calculation results.

5.2. Neutron energy spectra

Fig. 12 shows the calculated neutron energy
spectra through the bulk shield up to the shield top
floor at the center position (see Fig. 2). All neutron
energy spectra have a hadron cascade peak at
around 100 MeV: The neutron energy spectrum in
a concrete region at Z ¼ 422:5 cm has a typical
1=E slowing-down spectrum (flat in lethargy
spectrum). On the shield top floor inside the
iron-igloo shown at Z ¼ 528:6 cm in Fig. 12, the
neutron spectrum has a broad peak at around a
few hundred keV over the region from 10�4 to
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Fig. 9. Graphical plots of recorded neutrons leaked at layer (b) calculation. Calculation of layer (c) is carried out separately by using

two different sources of (1) ‘‘forward-duct’’ and (2) ‘‘side-back’’.
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10 MeV due to inelastic scattering in the iron
plates.
Fig. 13 shows the calculated neutron energy

spectra on the shield top floor, behind the 60-cm-
thick additional concrete and behind the 30-cm-
thick additional iron at the ‘‘center’’ position
compared with the experimental data [5]. High-
energy neutrons above 250 MeV are not counted
in the calculations. Note that the calculated energy
spectrum on the additional concrete shield is in
remarkably good agreement with the experiment
within about 40% in the energy region above
1 MeV: Generally, the calculated energy spectra
agree with the measured ones within a factor of 2
over a broad energy range with the maximum
differences reaching a factor of 3–6, mainly in the
thermal energy region, where the BNAB cross-
section data compiled in the MARS code have
poor accuracy. These results are quite impressive
in the transport calculation through such a very
thick shield, where the neutron flux attenuation
reaches seven orders of magnitude, 10�7; as shown
later in Fig. 14, while on the other hand, the
previous calculation with the ANISN and HETC
code [6] underestimated about one order of
magnitude.
It is said that the calculation using the MCNP

option instead of the 28-group-BNAB of MARS
for the low-energy neutron transport is expected to
improve the agreement with the experiment below
14:5 MeV:

5.3. Attenuation of the reaction rates

Attenuation profile of the 12Cðn; 2nÞ11C reaction
rates through the bulk shield and above the shield
top floor at the center position which were
estimated from the calculated energy spectra were
obtained with good statistics, as shown in Fig. 14.
Since the 12Cðn; 2nÞ11C reaction has a threshold
energy of 20 MeV and the reaction cross-section
above 20 MeV has almost a constant value of
20 mb; the 12Cðn; 2nÞ11C reaction rate corresponds
to the high-energy neutron flux above 20 MeV:
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Therefore, Fig. 14 gives the high-energy neutron
flux attenuations through iron and concrete. As
previously described, the high-energy neutron flux
decreases about seven orders of magnitude, 10�7

from the target position up to the shield top floor.
Fig. 15, which is the expansion in the region

above the shield top area of Fig. 14, shows the
attenuation profiles of the 12Cðn; 2nÞ11C reaction
rates above the shield top floor without an
additional shield (e.g. air), behind the additional
concrete and iron shields at the ‘‘center’’ position
(see also Table 3). The attenuation profiles of the
measured and calculated reaction rates show a
slight difference especially in the case of air, and
the discrepancy of the reaction rate is typically
within 60% and within a factor of 2 in the
maximum case. It should be clarified that this
calculation gives more accurate values than the
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earlier simple calculations [6], which gave under-
estimations of about one order of magnitude.
Figs. 16 and 17 show the spatial distributions of

the estimated 12Cðn; 2nÞ11C reaction rates in the
inner area of the igloo on the shield top, along the
up-down direction (X -axis) behind the additional
concrete and iron shields, respectively. The calcu-
lated data are compared with the experimental
results and agree well within about a factor of 2.
Both calculated and experimental results give
increasing trend of the reaction rates toward
downstream due to the contribution of neutron
leakage through a large He-duct as described
before.

5.4. Neutron attenuation length

The neutron attenuation lengths were estimated
from the attenuation profiles of the 12Cðn; 2nÞ11C
reaction rates using the least-mean square method,
which corresponds to the neutron flux attenuation
above 20 MeV: Attenuation curves based on the
attenuation lengths are drawn as straight lines in
Fig. 15. The attenuation lengths for both concrete
and iron, estimated from the calculated
12Cðn; 2nÞ11C reaction rates, are about 7% shorter
than those estimated from the experiment, as given
in Table 3.
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Table 3

Comparison of the measured and calculated attenuation lengths

estimated from the 12Cðn; 2nÞ11C reaction rate at ‘‘center’’

position

Shielding Attenuation length ðg=cm2)

material Exp. Cal. C/E

Concrete 125:475:1 116:773:8 0.93

ð2:36 g=cm3Þ

Iron 161:172:1 150:375:8 0.93

ð7:8 g=cm3Þ
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Fig. 17. Comparison between the calculated and measured
12Cðn; 2nÞ11C reaction rates above the shield top behind the

additional iron shield along the up-down axis (X -axis).
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6. Conclusion

A deep-penetration calculation was performed
with a three-dimensional multi-layer technique
using the MARS14(02) Monte Carlo code. The
neutron energy spectra behind a very thick shield
of approximately 3-m-thick iron and 1-m-thick
concrete were calculated with good statistics in the
energy range from thermal to 400 MeV: The
calculated results were compared with the ISIS
shielding experiment performed in 1998, and the
neutron energy spectra typically agreed within a
factor of 2 over a broad energy range, with the
maximum differences reaching a factor of 6 mainly
in the thermal energy region. The 12Cðn; 2nÞ11C
reaction rates were also estimated from the
calculated neutron energy spectra, and typically
agreed with the experiment within 60%, in the
maximum case within a factor of 2 behind
the additional concrete and iron shields at the
‘‘center’’. These results are quite impressive in the
calculation for deep-penetration problems.
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